Advertisements
Advertisements
प्रश्न
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`
उत्तर
Given, sin–1x + sin–1y + sin–1z = π
`\implies` sin–1x + sin–1y = π – sin–1z
`\implies sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)] = (pi - sin^-1z)`
`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = sin(pi - sin^-1z)`
`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = z`
`\implies xsqrt(1 - y^2) = z - ysqrt(1 - x^2)`
Now squaring on both sides, we get,
`(xsqrt(1 - y^2))^2 = (z - ysqrt(1 - x^2))^2`
`\implies x^2(1 - y^2) = (z^2 + y^2(1 - x^2) - 2zy sqrt(1 - x^2))`
`\implies x^2 - x^2y^2 = z^2 + y^2 - x^2y^2 - 2yz sqrt(1 - x^2)`
`\implies x^2 - y^2 - z^2 + 2yz sqrt(1 - x^2)` = 0
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate tan (tan–1(– 4)).
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
The maximum value of sinx + cosx is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Domain and Range of tan-1 x = ________.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.