Advertisements
Advertisements
प्रश्न
Evaluate:
`int x^2 cos x dx`
उत्तर
Let I = `int x^2 cos x dx`
On applying integration by parts
I = `x^2 int cos x dx - int{d/dx (x^2) int cosx.dx}dx`
I = `x^2 sinx - int 2x sinx dx`
Again on applying integration by parts
= x2 sin x – 2[– x cos x – ∫ – cos x dx]
= x2 sin x – 2[– x cos x + sin x + c]
= x2 sin x + 2x cos x – 2 sin x + c
= (x2 – 2) sin x + 2x cos x + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x sin-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`