Advertisements
Advertisements
प्रश्न
Integrate the function in x sin-1 x.
उत्तर
Let `I = int x sin^-1 x dx = int sin^-1 x* x dx`
`= sin^-1 x* (x^2/2) - int [d/dx (sin^-1 x) * x^2/2] dx`
`= sin^-1 x (x^2/2) - int 1/sqrt (1 - x^2)* x^2/2 dx`
`= x^2/2 sin^-1 x - 1/2 int x^2/ sqrt (1 - x^2) dx`
`= x^2/2 sin^-1 x - 1/2 I_1`
`I = x^2/2 sin^-1 x - 1/2 I_1` ....(i)
Where `I_1 = int x^2/sqrt (1 - x^2) dx`
Put x = sin θ
⇒ dx = cosθ dθ
∴ `I_1 = int (sin^2 theta)/sqrt (1- sin^2 theta) cos d theta`
`= int (sin^2 theta)/(cos theta) * cos theta d theta`
`= int sin^2 theta d theta = 1/2 int (1 - cos 2 theta) d theta`
`= 1/2int d theta - 1/2 int cos 2 theta d theta 1/2 theta - 1/2 (sin 2 theta)/2 + C`
`1/2 theta - 1/2 sin theta cos theta + C`
`1/2 sin^-1x - 1/2x sqrt(1 - x^2) + C` ....(ii)
`[∵ sin theta = x ⇒ cos theta = sqrt (1 - sin^2 theta) = sqrt (1 - x^2)]`
From (i) and (ii), we get
∴ `I = x^2/2 sin^-1 x - 1/2 [1/2 sin^-1 x - 1/2 x sqrt(1 - x^2)] + C`
`= 1/4 sin^-1 x* (2x^2 - 1) + (x sqrt (1 - x^2))/4 + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in ex (sinx + cosx).
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
`int logx/(1 + logx)^2 "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
`int 1/sqrt(x^2 - 9) dx` = ______.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx