मराठी

Integrate the function in x sin-1 x. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in x sin-1 x.

बेरीज

उत्तर

Let `I = int x sin^-1 x dx = int sin^-1 x* x dx`

`= sin^-1 x* (x^2/2) - int [d/dx (sin^-1 x) * x^2/2]  dx`

`= sin^-1 x (x^2/2) - int 1/sqrt (1 - x^2)* x^2/2  dx`

`= x^2/2 sin^-1 x - 1/2 int x^2/ sqrt (1 - x^2) dx`

`= x^2/2 sin^-1 x - 1/2 I_1`

`I = x^2/2 sin^-1 x - 1/2 I_1`              ....(i)

Where `I_1 = int x^2/sqrt (1 - x^2)  dx`

Put x = sin θ 

⇒ dx = cosθ dθ

∴ `I_1 = int (sin^2 theta)/sqrt (1- sin^2 theta) cos d theta`

`= int (sin^2 theta)/(cos theta) * cos theta d theta`

`= int sin^2 theta d theta  = 1/2 int (1 - cos 2 theta) d theta`

`= 1/2int d theta - 1/2 int cos 2 theta d theta 1/2 theta - 1/2 (sin 2 theta)/2 + C`

  `1/2 theta - 1/2 sin theta cos theta + C`

`1/2 sin^-1x - 1/2x sqrt(1 - x^2) + C`                 ....(ii)

`[∵ sin theta = x ⇒ cos theta = sqrt (1 - sin^2 theta) = sqrt (1 - x^2)]`

From (i) and (ii), we get

∴ `I = x^2/2 sin^-1 x - 1/2 [1/2 sin^-1 x - 1/2 x sqrt(1 - x^2)] + C`

`= 1/4 sin^-1 x* (2x^2 - 1) + (x sqrt (1 - x^2))/4 + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 7 | पृष्ठ ३२७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in ex (sinx + cosx).


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int 1/x  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


`int logx/(1 + logx)^2  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


`int 1/sqrt(x^2 - 9) dx` = ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int e^x.sin2xdx`


`int(logx)^2dx` equals ______.


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×