Advertisements
Advertisements
प्रश्न
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
उत्तर
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + 4 log|x-1| + c
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in x sec2 x.
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int (sinx)/(1 + sin x) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
Evaluate `int 1/(x log x) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
`int 1/sqrt(x^2 - a^2)dx` = ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.