Advertisements
Advertisements
प्रश्न
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
उत्तर
`inte^x "cosec" x(1 - cot x)dx`
= `int e^x("cosec" x - "cosec" x . cot x)dx`
= `int e^x("cosec" x + (-"cosec" x . cot x))dx` ...`[∵ inte^x(f(x) + f^'(x))dx = e^xf(x) + c]`
= `e^x"cosec" x + c`
APPEARS IN
संबंधित प्रश्न
Integrate the function in (x2 + 1) log x.
Integrate the function in e2x sin x.
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following w.r.t.x : sec4x cosec2x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
`int (sinx)/(1 + sin x) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate:
`int e^(logcosx)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx