मराठी

Evaluate: cosec∫excosec x(1-cotx)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`

बेरीज

उत्तर

`inte^x "cosec"  x(1 - cot x)dx`

= `int e^x("cosec"  x - "cosec"  x . cot x)dx`

= `int e^x("cosec"  x + (-"cosec"  x . cot x))dx`  ...`[∵ inte^x(f(x) + f^'(x))dx = e^xf(x) + c]`

= `e^x"cosec"  x + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (April) Specimen Paper

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate the function in (x2 + 1) log x.


Integrate the function in e2x sin x.


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


`int (sinx)/(1 + sin x)  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int(x + 1/x)^3 dx` = ______.


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate:

`int e^(logcosx)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×