Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
उत्तर
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
∴ x2 (1 - y) dy = - y2 (1 + x) dx
∴ `((1-y)/y^2)dy = - ((1+x)/x^2)dx`
Integrating on both sides, we get
`int(1/y^2- 1/y) dy = - int (1/x^2+1/x)dx`
∴ `-1/y - log |y| = - (-1/x + log | x |)+c`
∴`(-1)/y - log |y| = 1/x - log | x |+c`
∴ `log | x | - log | y | = 1/x + 1/y + c`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x (log x)2.
Find :
`∫(log x)^2 dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int sin4x cos3x "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Solve: `int sqrt(4x^2 + 5)dx`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`