Advertisements
Advertisements
प्रश्न
`int 1/sqrt(x^2 - 8x - 20) "d"x`
उत्तर
Let I = `int 1/sqrt(x^2 - 8x - 20) "d"x`
= `int 1/sqrt(x^2 - 2.4x + 16 - 16 - 20) "d"x`
= `int ("d"x)/sqrt((x - 4)^2 - 36) "d"x`
= `int ("d"x)/sqrt((x - 4)^2 - 6^2) "d"x`
= `log|(x - 4) + sqrt((x - 4)^2 - 6^2)| + "c"`
∴ I = `log|(x - 4) + sqrt(x^2 - 8x - 20)| + "c"`
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x tan-1 x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
The value of `inta^x.e^x dx` equals