मराठी

The value of ∫ax.exdx equals - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `inta^x.e^x dx` equals

पर्याय

  • `(a^x.log_ea)e^x + c`

  • `(a^x.e^x)/(log_e(ae)) + c`

  • `(a^x.e^x)/(log_(ae)e) + c`

  • `log_e(ae)(ae)^x + c`

MCQ

उत्तर

`bb((a^x.e^x)/(log_e(ae)) + c)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (April) Specimen Paper

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate : sec3 x w. r. t. x.


Integrate the function in `x^2e^x`.


Integrate the function in x sin-1 x.


Integrate the function in ex (sinx + cosx).


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int log(logx)/x.dx`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/x  "d"x` = ______ + c


`int logx/(1 + logx)^2  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int 1/sqrt(x^2 - a^2)dx` = ______.


Solve: `int sqrt(4x^2 + 5)dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×