Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
उत्तर
Let I = `int cot^-1 (1 - x + x^2)*dx`
= `int tan^-1 (1/(1 - x + x^2))*dx`
= `int tan^-1 [(x + (1 - x))/(1 - x(1 - x))]`
= `int [tan^-1 x + tan^-1 (1 - x)]*dx`
= `int tan^-1 x*dx + int tan^-1 (1 - x)*dx`
∴ I = I1 + I2 ...(1)
I1 = `int tan^-1 x*dx = int(tan^-1x)1*dx`
= `(tan^-1x)* int 1dx - [d/dx (tan^-1x)* int 1dx]*dx`
= `(tan^-1x)x - int 1/(1 + x^2)*x*dx`
= `xtan^-1 x - (1)/(2) int (2x)/(1 + x^2)*dx`
∴ I1 = `x tan^-1x - (1)/(2)log|1 + x^2| + c_1`
...`[because d/dx (1 + x^2) = 2x and int (f'(x))/f(x) dx = log|f(x)| + c]`
I2 = `int tan^-1 (1 - x)*dx`
= `int tan^-1 (1 - x)]*1dx`
= `[tan^-1 (1 - x)]*int 1dx - int {d/dx [tan^-1 (1 - x)]* int 1dx}*dx`
= `[tan^-1 (1 - x)]*x - int (1)/(1 + (1 - x)^2)*(-1)*xdx`
= `xtan^-1 (1 - x) + int x/(1 + 1 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + int x/(2 - 2x + x^2)*dx`
Let x = `"A"[d/dx (2 - 2x + x^2)] + "B"`
∴ x = A(– 2 + 2x) + B = 2Ax + (–2A + B)
Comparing the coefficient of x and constant on both the sides, we get
1 = 2A and 0 = – 2A + B
∴ A = `(1)/(2) and 0 = -2(1/2) + "B"`
∴ B = 1
∴ x = `(1)/(2)(- 2 + 2x) + 1`
∴ I2= `xtan^-1 (1 - x) + int (1/2(-2 + 2x) + 1)/(2 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + 1/2 (-2 + 2x)/(2 - 2x + x^2)*dx + int (1)/(2 - 2x + x^2)*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|2 - 2x + x^2| + int (1)/(1 + (1 - 2x + x^2))*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + int (1)/(1 + (1 - x^2))*dx`
= `xtan^-1 (1 - x) + (1)/(2) log|x^2 - 2x + 2| + (1)/(1) (tan-1 (1 - x))/(-1) + c_2`
= `x tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| - tan^-1 (1 - x) + c_2`
= `(x - 1)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2`
∴ I2 = `-(1 - x)tan^-1 (1 - x) + (1)/(2)log|x^2 - 2x + 2| + c_2` ...(3)
From (1),(2) and (3), we get
I = `x tan^-1 x - (1)/(2) log|1 + x^2| + c_1 - (1 - x)tan^-1 (1 - x) + 1/2log|x^2 - 2x + 2| + c_2`
= `x tan^-1 x - (1)/(2) log|1 + x^2| - (1 - x)tan^-1 (1 - x) + 1/2 |x^2 - 2x + 2| + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in `x^2e^x`.
Integrate the function in x2 log x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in e2x sin x.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : e2x sin x cos x
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sinx)/(1 + sin x) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Solve: `int sqrt(4x^2 + 5)dx`
`int_0^1 x tan^-1 x dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`inte^(xloga).e^x dx` is ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx