Advertisements
Advertisements
प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
उत्तर
Let I = `int sqrt(x^2 - a^2)dx`
I = `int sqrt(x^2 - a^2)*1dx`
I = `sqrt(x^2 - a^2)*int1dx - int[d/dx(sqrt(x^2 - a^2))*int1dx]dx`
I = `sqrt(x^2 - a^2)*x - int[1/(2sqrt(x^2 - a^2))*d/dx(x^2 - a^2)*x]dx`
I = `sqrt(x^2 - a^2)*x - int1/(2sqrt(x^2 - a^2))(2x - 0)*x dx`
I = `sqrt(x^2 - a^2)*x - intx/sqrt(x^2 - a^2)*x dx`
I = `xsqrt(x^2 - a^2) - int(x^2 - a^2 + a^2)/(sqrt(x^2 - a^2))dx`
I = `xsqrt(x^2 - a^2) - intsqrt(x^2 - a^2) dx - a^2intdx/(sqrt(x^2 - a^2)`
I = `xsqrt(x^2 - a^2) - I - a^2log|x + sqrt(x^2 - a^2)| + c_1`
∴ 2I = `xsqrt(x^2 - a^2) - a^2log|x + sqrt(x^2 - a^2)| + c_1`
∴ I = `x/2sqrt(x^2-a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c_1/2`
∴ `intsqrt(x^2 - a^2) dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c, "where" c = c_1/2`
APPEARS IN
संबंधित प्रश्न
Integrate the function in `x^2e^x`.
Integrate the function in x log x.
Integrate the function in x2 log x.
Integrate the function in (sin-1x)2.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: ∫ (log x)2 dx
`int (sinx)/(1 + sin x) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Evaluate `int 1/(x(x - 1)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int tan^-1x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`