मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫x2-a2dx=x2x2-a2-a22log|x+x2-a2|+c - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`

बेरीज

उत्तर

Let I = `int sqrt(x^2 - a^2)dx`

I = `int sqrt(x^2 - a^2)*1dx`

I = `sqrt(x^2 - a^2)*int1dx - int[d/dx(sqrt(x^2 - a^2))*int1dx]dx`

I = `sqrt(x^2 - a^2)*x - int[1/(2sqrt(x^2 - a^2))*d/dx(x^2 - a^2)*x]dx`

I = `sqrt(x^2 - a^2)*x - int1/(2sqrt(x^2 - a^2))(2x - 0)*x  dx`

I = `sqrt(x^2 - a^2)*x - intx/sqrt(x^2 - a^2)*x  dx`

I = `xsqrt(x^2 - a^2) - int(x^2 - a^2 + a^2)/(sqrt(x^2 - a^2))dx`

I = `xsqrt(x^2 - a^2) - intsqrt(x^2 - a^2) dx - a^2intdx/(sqrt(x^2 - a^2)`

I = `xsqrt(x^2 - a^2) - I - a^2log|x + sqrt(x^2 - a^2)| + c_1`

∴ 2I = `xsqrt(x^2 - a^2) - a^2log|x + sqrt(x^2 - a^2)| + c_1`

∴ I = `x/2sqrt(x^2-a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c_1/2`

∴ `intsqrt(x^2 - a^2) dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c, "where"  c = c_1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Integrate the function in `x^2e^x`.


Integrate the function in x log x.


Integrate the function in xlog x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int (sinx)/(1 + sin x)  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Evaluate `int 1/(x(x - 1))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate `int tan^-1x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×