मराठी

Evaluate the following: d∫01xlog(1+2x) dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`

बेरीज

उत्तर

Let I = `int_0^1 x log(1 + 2x)  "d"x`

= `[log (1 + 2x)  x^2/2]_0^1 - int_0^1  2/(1 + 2x)  x^2/2  "d"x`  .....[Integrating by parts]

= `1/2 [x^2 log (1 + 2x)]_0^1 - int_0^1  x^2/(1 + 2x)  "d"x`

= `1/2 [1 log 3 - 0] - int_0^1 (x/2 - x/(2(1 + 2x)))"d"x`

= ` 1/2 log 3 - 1/2 int_0^1 x "d"x + 1/2 int_0^1 x/(1 + 2x)  "d"x`

= `1/2 log 3 - 1/2 [x^2/2]_0^1 + 1/4 int_0^1  ((2x + 1 - 1))/((2x + 1))  "d"x`

= `1/2 log 3 - 1/2 [1/2 - 0] + 1/4 int_0^1 "d"x - 1/4 int_0^1  1/(1 + 2x)  "d"x`

= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log (2x + 1)]_0^1`

= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log 3 - log 1]`

= `1/2 log 3 - 1/8 log 3`

= `3/8 log 3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 45 | पृष्ठ १६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate the function in `x^2e^x`.


Integrate the function in x (log x)2.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


Evaluate: ∫ (log x)2 dx


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate:

`int (logx)^2 dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×