Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
उत्तर
Let I = `int_0^1 x log(1 + 2x) "d"x`
= `[log (1 + 2x) x^2/2]_0^1 - int_0^1 2/(1 + 2x) x^2/2 "d"x` .....[Integrating by parts]
= `1/2 [x^2 log (1 + 2x)]_0^1 - int_0^1 x^2/(1 + 2x) "d"x`
= `1/2 [1 log 3 - 0] - int_0^1 (x/2 - x/(2(1 + 2x)))"d"x`
= ` 1/2 log 3 - 1/2 int_0^1 x "d"x + 1/2 int_0^1 x/(1 + 2x) "d"x`
= `1/2 log 3 - 1/2 [x^2/2]_0^1 + 1/4 int_0^1 ((2x + 1 - 1))/((2x + 1)) "d"x`
= `1/2 log 3 - 1/2 [1/2 - 0] + 1/4 int_0^1 "d"x - 1/4 int_0^1 1/(1 + 2x) "d"x`
= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log (2x + 1)]_0^1`
= `1/2 log 3 - 1/4 + 1/4 - 1/8 [log 3 - log 1]`
= `1/2 log 3 - 1/8 log 3`
= `3/8 log 3`
APPEARS IN
संबंधित प्रश्न
Integrate the function in `x^2e^x`.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Evaluate: ∫ (log x)2 dx
`int 1/sqrt(x^2 - 8x - 20) "d"x`
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate:
`int (logx)^2 dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`