Advertisements
Advertisements
प्रश्न
Evaluate `int 1/(x(x - 1)) "d"x`
उत्तर
Let I = `int 1/(x(x - 1)) "d"x`
= `int(x - x + 1)/(x(x - 1)) "d"x`
= `int(x - (x - 1))/(x(x - 1)) "d"x`
= `int(1/(x - 1) - 1/x) "d"x`
= `int 1/(x - 1) "d"x - int 1/x "d"x`
= `log |x - 1| - log |x| + "c"`
∴ I = `log |(x - 1)/x| + "c"`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x2 log x.
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int logx/(1 + logx)^2 "d"x`
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Find `int_0^1 x(tan^-1x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Solve: `int sqrt(4x^2 + 5)dx`
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`intsqrt(1+x) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.