Advertisements
Advertisements
प्रश्न
Evaluate `int 1/(x(x - 1)) "d"x`
उत्तर
Let I = `int 1/(x(x - 1)) "d"x`
= `int(x - x + 1)/(x(x - 1)) "d"x`
= `int(x - (x - 1))/(x(x - 1)) "d"x`
= `int(1/(x - 1) - 1/x) "d"x`
= `int 1/(x - 1) "d"x - int 1/x "d"x`
= `log |x - 1| - log |x| + "c"`
∴ I = `log |(x - 1)/x| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in x (log x)2.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: ∫ (log x)2 dx
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int (logx)^2 dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx