हिंदी

Integrate the function in x (log x)2. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in x (log x)2.

योग

उत्तर

Let `I = int x (log x)^2 dx`

`= int (log x)^2 * x dx`

`= (log x)^2 int x  dx - int [d/dx (log x)^2 * int x  dx] dx`

`= x^2/2 (log x)^2 - int (log x) * x dx + C`

`= x^2/2 (log x)^2 - [ (log x) * x^2/2 - int 1/x * x^2/2 dx]`

`= x^2/2 (log x)^2 - x^2/2 log x  + 1/2 int x  dx`

`= x^2/2 (log x)^2 - x^2/2 log x + 1/2 int*x^2/2 + C`

`= x^2 (log x)^2 - x^2/2 log x + 1/2 * x^2/2 + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 14 | पृष्ठ ३२७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin x.


Integrate the function in x cos-1 x.


Integrate the function in tan-1 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


`int(x + 1/x)^3 dx` = ______.


`int"e"^(4x - 3) "d"x` = ______ + c


Find `int_0^1 x(tan^-1x)  "d"x`


`int 1/sqrt(x^2 - 9) dx` = ______.


Find: `int e^x.sin2xdx`


Solve: `int sqrt(4x^2 + 5)dx`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate:

`int e^(logcosx)dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×