Advertisements
Advertisements
प्रश्न
Integrate the function in x (log x)2.
उत्तर
Let `I = int x (log x)^2 dx`
`= int (log x)^2 * x dx`
`= (log x)^2 int x dx - int [d/dx (log x)^2 * int x dx] dx`
`= x^2/2 (log x)^2 - int (log x) * x dx + C`
`= x^2/2 (log x)^2 - [ (log x) * x^2/2 - int 1/x * x^2/2 dx]`
`= x^2/2 (log x)^2 - x^2/2 log x + 1/2 int x dx`
`= x^2/2 (log x)^2 - x^2/2 log x + 1/2 int*x^2/2 + C`
`= x^2 (log x)^2 - x^2/2 log x + 1/2 * x^2/2 + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x cos-1 x.
Integrate the function in tan-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int(x + 1/x)^3 dx` = ______.
`int"e"^(4x - 3) "d"x` = ______ + c
Find `int_0^1 x(tan^-1x) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int e^x.sin2xdx`
Solve: `int sqrt(4x^2 + 5)dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate:
`int e^(logcosx)dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.