Advertisements
Advertisements
प्रश्न
Integrate the function in x cos-1 x.
उत्तर
Let `I = int x cos^-1 x dx = int cos^-1 x*x dx`
`= cos^-1 x* int x dx - int [d/dx (cos^-1 x) int x dx] dx`
`= cos^-1 x (x^2/2) - int (-1)/ sqrt (1 - x^2) (x^2/2) dx`
`= x^2/2 cos^-1 x + 1/2 int x^2/ sqrt (1 - x^2) dx`
∴ `I = x^2/2 cos^-1 x+ 1/2 I_1` ....(i)
Where `I_1 = int x^2/ sqrt (1 - x^2) dx`
Put x = cos θ
⇒ dx = -sinθ dθ
∴ `I_1 = int (cos^2 theta (-sin theta))/sqrt (1 - cos^2 theta) d theta`
`= - int cos^2 theta d theta = - 1/2 int (1 + cos 2 theta) d theta`
`= -1/2 (theta + (sin 2 theta)/2) + C`
`= -1/2 (theta + 1/2 xx 2 sin theta cos theta) + C`
`= - 1/2 (theta + cos theta sqrt (1 - cos^2 theta)) + C`
`= - 1/2 (cos^-1 x + x sqrt (1 - x^2)) + C` ....(ii)
From (i) and (ii), we get
`I = (2x^2 - 1) (cos^-1 x)/4 - x/4 sqrt (1 - x^2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in (x2 + 1) log x.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sinx)/(1 + sin x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`