हिंदी

Integrate the function in x cos-1 x. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in x cos-1 x.

योग

उत्तर

Let `I = int x cos^-1 x  dx = int cos^-1 x*x dx`

`= cos^-1 x* int x  dx - int [d/dx (cos^-1 x) int x  dx]  dx`

`= cos^-1 x (x^2/2) - int (-1)/ sqrt (1 - x^2) (x^2/2) dx`

`= x^2/2 cos^-1 x + 1/2 int x^2/ sqrt (1 - x^2)  dx`

∴ `I = x^2/2 cos^-1 x+ 1/2 I_1`             ....(i)

Where `I_1 = int x^2/ sqrt (1 - x^2)  dx`

Put x = cos θ 

⇒ dx = -sinθ dθ 

∴ `I_1 = int (cos^2 theta (-sin theta))/sqrt (1 - cos^2 theta) d theta`

`= - int cos^2 theta d theta = - 1/2 int  (1 + cos 2 theta) d theta`

`= -1/2 (theta + (sin 2 theta)/2) + C`

`= -1/2 (theta + 1/2 xx 2 sin theta cos theta) + C`

`= - 1/2 (theta + cos theta sqrt (1 - cos^2 theta)) + C`

`= - 1/2 (cos^-1 x + x sqrt (1 - x^2)) + C`             ....(ii)

From (i) and (ii), we get

`I = (2x^2 - 1) (cos^-1 x)/4 - x/4 sqrt (1 - x^2) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 9 | पृष्ठ ३२७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in (x2 + 1) log x.


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x(x - 1))  "d"x`


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`int x^2 cos x  dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×