Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
विकल्प
`(3)^(x^3) + "c"`
`((3)^(x^3))/(3log3) + "c"`
`log 3*(3)^(x^3) + "c"`
`x^2 (3)^(x^2) + "c"`
उत्तर
`((3)^(x^3))/(3log3) + "c"`
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in `x^2e^x`.
Integrate the function in `(xe^x)/(1+x)^2`.
`intx^2 e^(x^3) dx` equals:
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : e2x sin x cos x
`int (sinx)/(1 + sin x) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
Evaluate `int 1/(x log x) "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`intsqrt(1+x) dx` = ______
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.