Advertisements
Advertisements
Question
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Options
`(3)^(x^3) + "c"`
`((3)^(x^3))/(3log3) + "c"`
`log 3*(3)^(x^3) + "c"`
`x^2 (3)^(x^2) + "c"`
Solution
`((3)^(x^3))/(3log3) + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sin x.
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.