Advertisements
Advertisements
Question
Integrate the following w.r.t.x : log (x2 + 1)
Solution
Let I = `int log (x^2 + 1)*dx`
= `int [log (x^2 + 1)]*1dx`
= `[log(x^2 + 1)] int 1dx - int [d/dx{log (x^2 + 1)} int 1dx]*dx`
= `[log (x^2 + 1)]*x - int 1/(x^2 + 1)*dx (x^2 + 1)*xdx`
= `xlog(x^2 + 1) - int (2x^2)/(x^2 + 1)*dx`
= `xlog (x^2 + 1) - int (2x^2 + 2 - 2)/(x^2 + 1)*dx`
= `xlog(x^2 + 1) - int[(2(x^2 + 1))/(x^2 + 1) - 2/(x^2 + 1)]*dx`
= `xlog(x^2 + 1) - int[2 int 1dx - 2 int 1/(x^2 + 1)*dx]`
= x log (x2 + 1) – 2x + 2 tan–1 x + c.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^2e^(4x)dx`