Advertisements
Advertisements
Question
`int logx/(1 + logx)^2 "d"x`
Solution
Let I = `int logx/(1 + logx)^2 "d"x`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "t"/(1 + "t")^2 "e"^"t" "dt"`
= `int "e"^"t" [(("t" + 1) - 1)/(1 + "t")^2] "dt"`
= `int "e"^"t" [("t" + 1)/(1 + "t")^2 - 1/(1 + "t")^2] "dt"`
= `int "e"^"t" [1/(1 + "t") - 1/(1 + "t")^2] "dt"`
Put f(t) = `1/(1 + "t")`
∴ f'(t) = `(-1)/(1 + "t")^2`
∴ I = `int "e"^"t" ["f"("t") + "f'"("t")] "dt"`
= et f(t) + c
= `"e"^"t"* 1/(1 + "t") + "c"`
∴ I = `x/(1 + logx) + "c"`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x log x.
Integrate the function in (x2 + 1) log x.
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.