English

If ∫π/2 −π/2 sin^4 x/ (sin^4 x+cos^4 x)dx, then the value of I is: - Mathematics and Statistics

Advertisements
Advertisements

Question

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4

Solution

(C)

`I= int_(-pi/2)^(pi/2)(sin^4x)/(sin^4x+cos^4x)dx`

`Let f(x)=(sin^4x)/(sin^4x+cos^4x)dx`

`f(x)=(sin^4(-x))/(sin^4(-x)+cos^4(-x_)dx`

`f(x)=(sin^4x)/(sin^4x+cos^4x)dx`

=f(x)

f(x) is an even function.

`I=2 int_(0)^(pi/2)(sin^4x)/(sin^4x+cos^4x)dx............(i)`

`I=2 int_(0)^(pi/2)(sin^4(pi/2-x))/(sin^4(pi/2-x)+cos^4(pi/2-x))dx`

`I=2 int_(0)^(pi/2)(cos^4x)/(cos^4x+sin^4x)dx......(ii)`

Adding (i) and (ii), we get

`2I=2 int_(0)^(pi/2)dx`

`I=[x]_0^(pi/2)`

`I=pi/2`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin 3x.


Integrate the function in `x^2e^x`.


Integrate the function in xlog x.


Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in e2x sin x.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int (sinx)/(1 + sin x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×