Advertisements
Advertisements
Question
Integrate the function in (sin-1x)2.
Solution
Let `I = int (sin^-1 x)^2 dx`
Put `sin^-1 x = theta`
⇒ x = sinθ
⇒ dx = cosθ dθ
∴ `I = int theta^2 cos theta d theta`
`= theta^2 int (cos theta) d theta - int (d/ (d theta) (theta^2) * int cos theta d theta) d theta`
`= theta^2 (sin theta) - int 2 theta (sin theta) d theta`
`= theta^2 sin theta - 2 int theta sin theta d theta + C`
`= theta^2 sin theta - 2 [theta * (- cos theta) - int 1 * (- cos theta) d theta] + C`
`= theta^2 sin theta + 2 theta cos theta - 2 int cos theta d theta + C`
`= theta^2 sin theta + 2 theta sqrt (1 - sin^2 theta) - 2 sin theta + C`
`= x (sin^-1 x)^2 + 2sin^-1 x sqrt (1 - x^2) - 2x + C`
APPEARS IN
RELATED QUESTIONS
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/sqrt(2x^2 - 5) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int(1-x)^-2 dx` = ______
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.