English

Integrate the function in (sin-1x)2. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in (sin-1x)2.

Sum

Solution

Let `I = int (sin^-1 x)^2 dx`

Put `sin^-1 x = theta`

⇒ x = sinθ 

⇒ dx = cosθ dθ

∴ `I = int theta^2 cos theta d theta`

`= theta^2 int (cos theta) d theta - int (d/ (d theta) (theta^2) * int cos theta d theta) d theta`

`= theta^2 (sin theta) - int 2 theta (sin theta) d theta`

`= theta^2 sin theta  - 2 int theta sin theta d theta + C`

`= theta^2 sin theta - 2 [theta * (- cos theta) - int 1 * (- cos theta) d theta] + C`

`= theta^2 sin theta + 2 theta cos theta - 2 int cos theta d theta  + C`

`= theta^2 sin theta + 2 theta sqrt (1 - sin^2 theta) - 2 sin theta + C`

`= x (sin^-1 x)^2 + 2sin^-1 x sqrt (1 - x^2) - 2x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 10 | Page 327

RELATED QUESTIONS

If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


`int(1-x)^-2 dx` = ______


`inte^(xloga).e^x dx` is ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3e^(x^2) dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×