English

Integrate the function in ex1+sinx1+cosx. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in `e^x (1 + sin x)/(1+cos x)`.

Sum

Solution

Let `I = int (e^x(1 + sin x))/(1 + cos x)  dx`

`I = int e^x [(1 + sin  x/2 cos  x/2)/(2 cos^2  x/2)]  dx`

`= inte^x [1/2 sec^2  x/2 + tan  x/2]  dx`

`I = inte^x [tan  x/2 + 1/2 sec^2  x/2]  dx`

`= e^x {tan  x/2 + [d/dx(tan  x/2)]}`

`= e^x * tan (x/2) + C`       `...[∵ int e^x (f(x) + f' (x)) dx = e^x f (x) + C]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 328]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 18 | Page 328

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


Solution of the equation `xdy/dx=y log y` is ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`inte^(xloga).e^x dx` is ______


`int logx  dx = x(1+logx)+c`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate `int tan^-1x  dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×