Advertisements
Advertisements
Question
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Solution
Let `I = int (e^x(1 + sin x))/(1 + cos x) dx`
`I = int e^x [(1 + sin x/2 cos x/2)/(2 cos^2 x/2)] dx`
`= inte^x [1/2 sec^2 x/2 + tan x/2] dx`
`I = inte^x [tan x/2 + 1/2 sec^2 x/2] dx`
`= e^x {tan x/2 + [d/dx(tan x/2)]}`
`= e^x * tan (x/2) + C` `...[∵ int e^x (f(x) + f' (x)) dx = e^x f (x) + C]`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`inte^(xloga).e^x dx` is ______
`int logx dx = x(1+logx)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`