Advertisements
Advertisements
प्रश्न
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
उत्तर
Let `I = int (e^x(1 + sin x))/(1 + cos x) dx`
`I = int e^x [(1 + sin x/2 cos x/2)/(2 cos^2 x/2)] dx`
`= inte^x [1/2 sec^2 x/2 + tan x/2] dx`
`I = inte^x [tan x/2 + 1/2 sec^2 x/2] dx`
`= e^x {tan x/2 + [d/dx(tan x/2)]}`
`= e^x * tan (x/2) + C` `...[∵ int e^x (f(x) + f' (x)) dx = e^x f (x) + C]`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in `x^2e^x`.
Integrate the function in x (log x)2.
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int sin4x cos3x "d"x`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`