Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
उत्तर
Let I = `int "dx"/(25"x" - "x"(log "x")^2)`
`= int 1/("x"[25 - (log "x")^2])` dx
Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int "dt"/(25 - "t"^2)`
`= int 1/((5)^2 - "t"^2)` dt
`= 1/(2(5)) * log |(5 + "t")/(5 - "t")|` + c
∴ I = `1/10 log |(5 + log "x")/(5 - log "x")|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x^3.logx.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
Evaluate `int 1/(x(x - 1)) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`intsqrt(1+x) dx` = ______
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`inte^x sinx dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.