हिंदी

Integrate the following functions w.r.t. x : (1+sinx1+cosx).ex - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`

योग

उत्तर

Let I = `int e^x ((1 + sin x)/(1 + cos x)).dx`

= `int e^x [(1 + 2sin  x/2 cos  x /2)/(2 cos^2  x/2)].dx`

= `int e^x [(1)/(2cos^2  x/2) + (2sin  x/2 cos  x/2)/(2cos^2  x/2)].dx`

= `int e^x[1/2 sec^2  x/2 + tan (x/2)].dx`

Put f(x) = `tan (x/2)`

∴ f'(x) = `d/dx [tan  x/2]`

= `sec^2  x/(2).(1)/(2)`

= `(1)/(2) sec^2  x/(2)`

∴ I = `int e^x [f(x) + f'(x)].dx`

= ex f(x) + c

= `e^x. tan (x/2) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 3.2 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in xlog x.


Integrate the function in x cos-1 x.


Integrate the function in (x2 + 1) log x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int logx/(1 + logx)^2  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`intsqrt(1+x)  dx` = ______


`int1/(x+sqrt(x))  dx` = ______


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int x^2 cos x  dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×