Advertisements
Advertisements
प्रश्न
`int ("x" + 1/"x")^3 "dx"` = ______
विकल्प
`1/4 ("x" + 1/"x")^4` + c
`"x"^4/4 + "3x"^2/2 + 3 log "x" - 1/"2x"^2 + "c"`
`"x"^4/4 + "3x"^2/2 + 3 log "x" + 1/"x"^2 + "c"`
`("x" - "x"^-1)^3` + c
उत्तर
`int ("x" + 1/"x")^3 "dx"` = `bbunderline("x"^4/4 + "3x"^2/2 + 3 log "x" - 1/"2x"^2 + "c")`
Explanation:
Let I = `int ("x" + 1/"x")^3 "dx"`
`int ("x"^3 + "3x" + 3/"x" + 1/"x"^3)` dx
`= "x"^4/4 + 3 "x"^2/2 + 3 log |"x"| - 1/"2x"^2` + c
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
`int 1/sqrt(2x^2 - 5) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Find: `int e^x.sin2xdx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.