हिंदी

Find: ∫ex.sin2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Find: `int e^x.sin2xdx`

योग

उत्तर

Let I = `int e^xsin2xdx`

Applying integration by parts

I = `int \underset(\text(I))(e)^x \underset(\text(II))(sin 2x) dx`

= `e^x int sin 2xdx - int [d/(dx) (e^x) int sin 2xdx]dx`

= `e^x((-cos2x)/2) + 1/2 int e^x cos 2xdx`

= `1/2(-e^x cos2x) + 1/2[e^x int cos 2xdx - int (d/(dx) (e^x) int cos2xdx)dx]`

= `1/2 (-e^x cos2x) + 1/2[(e^xsin2x)/2 - 1/2 int e^x sin 2xdx]`

= `1/2 (-e^x cos 2x) + 1/4 (e^x sin 2x) - 1/4 int e^x sin 2xdx + K`

∴ 4I = `-2e^x cos2x + e^xsin2x - I + K`

or 5I = `-2e^x cos2x + e^xsin2x + K`

I = `1/5(e^xsin2x - 2e^xcos2x) + K/5`

or I = `1/5(e^xsin2x - 2e^xcos2x) + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in e2x sin x.


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Evaluate:

`int (logx)^2 dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×