Advertisements
Advertisements
प्रश्न
Find: `int e^x.sin2xdx`
उत्तर
Let I = `int e^xsin2xdx`
Applying integration by parts
= `e^x int sin 2xdx - int [d/(dx) (e^x) int sin 2xdx]dx`
= `e^x((-cos2x)/2) + 1/2 int e^x cos 2xdx`
= `1/2(-e^x cos2x) + 1/2[e^x int cos 2xdx - int (d/(dx) (e^x) int cos2xdx)dx]`
= `1/2 (-e^x cos2x) + 1/2[(e^xsin2x)/2 - 1/2 int e^x sin 2xdx]`
= `1/2 (-e^x cos 2x) + 1/4 (e^x sin 2x) - 1/4 int e^x sin 2xdx + K`
∴ 4I = `-2e^x cos2x + e^xsin2x - I + K`
or 5I = `-2e^x cos2x + e^xsin2x + K`
I = `1/5(e^xsin2x - 2e^xcos2x) + K/5`
or I = `1/5(e^xsin2x - 2e^xcos2x) + c`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Evaluate:
`int (logx)^2 dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`