हिंदी

Complete the following activity: ∫02dx4+x-x2 = ∫02dx-x2+□+□ = ∫02dx-x2+x+14-□+4 = ∫02dx(x-12)2-(□)2 = 117log(20+41720-417) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`

रिक्त स्थान भरें
योग

उत्तर

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 +bb (x + 4)`

= `int_0^2 dx/(-x^2 + x + 1/4 - bb(1/4) + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (bbsqrt17/2)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

संबंधित प्रश्न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


Evaluate: ∫ (log x)2 dx


`int 1/x  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int_0^1 x tan^-1 x  dx` = ______.


`int(1-x)^-2 dx` = ______


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate:

`int1/(x^2 + 25)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×