Advertisements
Advertisements
प्रश्न
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
उत्तर
Let I = `int "e"^"x"/(4"e"^"2x" -1)` dx
`"I" = int "e"^"x"/(4("e"^"x")^2 - 1)` dx
Put ex = t
∴ ex dx = dt
∴ I = `int "dt"/(4"t"^2 - 1)`
`∴ "I" = 1/4 int 1/("t"^2 - 1/4)` dt
`∴ "I" = 1/4 int 1/("t"^2 - (1/2)^2)` dt
`∴ "I" = 1/4 . 1/(2 (1/2)) log |("t" - 1/2)/("t" + 1/2)|` + c
`∴ "I" = 1/4 log |("2t" - 1)/("2t" + 1)|` + c
Resubstitute t = ex
`∴ "I" = 1/4 log |(2"e"^"x" - 1)/(2"e"^"x" + 1)|` + c
Notes
Answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x.cos^3x.dx`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int logx/(1 + logx)^2 "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^x.sin2xdx`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`