Advertisements
Advertisements
प्रश्न
Integrate the function in `e^x (1/x - 1/x^2)`.
उत्तर
Let `I = inte^x (1/x - 1/x^2) dx`
`= int e^x {1/x + [d/dx (1/x)]} dx`
`= e^x xx 1/x + C = e^x/x + C` `...[∵ int e^x (f (x)+ f' (x)) dx = e^x f (x) + C]`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int1/(x+sqrt(x)) dx` = ______
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.