हिंदी

Integrate the following functions w.r.t. x : e2x.sin3x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `e^(2x).sin3x`

योग

उत्तर

Let I = `int e^(2x).sin3x`

I = ` int sin 3x . e^(2x) dx`

I = `sin3x . int e^(2x) dx - int[d/dx (sin3x) int e^(2x)dx]dx`

I = `sin3x . e^(2x)/2 - int 3cos3x . e^(2x)/2 dx`

I = `1/2 sin3x.e^(2x) - 3/2 int cos3x . e^(2x)dx`

I = `1/2sin3x.e^(2x) - 3/2 intcos3x inte^(2x)dx - int [d/dx cos3x . int e^(2x)dx]dx`

I = `1/2 sin3x . e^(2x) - 3/2 cos3x . e^(2x)/2 + 3/2 int -sin3x . x3 . e^(2x)/2 dx` 

I = `1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) - 9/4 [int sin3x . e^(2x) dx]`

I = `1/2 sin3x . e^(2x) - 3/4 . cos3x . e^(2x) - 9/4 "I" + "c"_1`

`"I" + 9/4"I" = 1/2 sin3x . e^(2x) - 3/4 cos3x . e^(2x) + "c"_1`

`13/4 "I" = 1/2 e^(2x) [sin3x - 3/2 cos3x] + "c"_1`

I = `4/13 xx 1/2 e^(2x) [sin3x . 3/2 cos3x] + 4/13 "c"_1    ...[at  4/13 "c"_1 = "c"]`

I = `1/13 e^(2x) [2 sin3x - 3 cos3x] + "c"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 2.01 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x log 2x.


Integrate the function in x cos-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in (x2 + 1) log x.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/x  "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(x log x)  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


`int(1-x)^-2 dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`inte^(xloga).e^x dx` is ______


`int logx  dx = x(1+logx)+c`


Evaluate `int(1 + x + (x^2)/(2!))dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int x^2 cos x  dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×