हिंदी

If ∫π/2 −π/2 sin^4 x/ (sin^4 x+cos^4 x)dx, then the value of I is: - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4

उत्तर

(C)

`I= int_(-pi/2)^(pi/2)(sin^4x)/(sin^4x+cos^4x)dx`

`Let f(x)=(sin^4x)/(sin^4x+cos^4x)dx`

`f(x)=(sin^4(-x))/(sin^4(-x)+cos^4(-x_)dx`

`f(x)=(sin^4x)/(sin^4x+cos^4x)dx`

=f(x)

f(x) is an even function.

`I=2 int_(0)^(pi/2)(sin^4x)/(sin^4x+cos^4x)dx............(i)`

`I=2 int_(0)^(pi/2)(sin^4(pi/2-x))/(sin^4(pi/2-x)+cos^4(pi/2-x))dx`

`I=2 int_(0)^(pi/2)(cos^4x)/(cos^4x+sin^4x)dx......(ii)`

Adding (i) and (ii), we get

`2I=2 int_(0)^(pi/2)dx`

`I=[x]_0^(pi/2)`

`I=pi/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


Integrate the function in x sin x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in tan-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int sin4x cos3x  "d"x`


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×