Advertisements
Advertisements
प्रश्न
If `y=sec^-1((sqrtx-1)/(x+sqrtx))+sin_1((x+sqrtx)/(sqrtx-1)), `
(A) x
(B) 1/x
(C) 1
(D) 0
उत्तर
(D)
`Let y=sec^-1((sqrtx-1)/(x+sqrtx))+sin^-1((x+sqrtx)/(sqrtx-1))`
`=cos^-1((x+sqrtx)/(sqrtx-1))+sin^-1((x+sqrtx)/(sqrtx-1)) [because sec^-1(x)=cos^-1(1/x)]`
`therefore y=pi/2`
`dy/dx=d/dx(pi/2)=0`
APPEARS IN
संबंधित प्रश्न
If `y=cos^-1(2xsqrt(1-x^2))`, find dy/dx
Find `dy/dx if y=cos^-1(sqrt(x))`
find dy/dx if `y=tan^-1((6x)/(1-5x^2))`
If y = f(x) is a differentiable function of x such that inverse function x = f–1 (y) exists, then prove that x is a differentiable function of y and `dx/dy=1/((dy/dx)) " where " dy/dx≠0`
If y = f (x) is a differentiable function of x such that inverse function x = f –1(y) exists, then
prove that x is a differentiable function of y and
`dx/dy=1/(dy/dx)`, Where `dy/dxne0`
Hence if `y=sin^-1x, -1<=x<=1 , -pi/2<=y<=pi/2`
then show that `dy/dx=1/sqrt(1-x^2)`, where `|x|<1`
Find `dy/dx` if `y = tan^(-1) ((5x+ 1)/(3-x-6x^2))`
If `x^y = e^(x - y)` , show that `(dy)/(dx) = logx/(1 + logx)^2`
If `x^y = e^(x - y)` , show that `(dy)/(dx) = logx/(1 + logx)^2`
The total cost function of a firm is C = x2 + 75x + 1600 for output x. Find the output for which the average cost ls minimum. Is CA= Cm at this output?