हिंदी

The Total Cost Function of a Firm is C = X2 + 75x + 1600 for Output X. Find The Output for Which the Average Cost Ls Minimum. is Ca= Cm at this Output? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The total cost function of a firm is C = x2 + 75x + 1600 for output x. Find the  output for which the average cost ls minimum. Is CA= Cm at this output?  

योग

उत्तर

Given C = x2 + 75x + 1600         ..........(1)

Marginal cost Cm = `(dC)/dx`
Differentiating (i) w.r.t.x
Cm = 2x + 75
Average cost CA = `C/x`
                           = x + 75 + `1600/x`
Diff (ii) w.r.t.x 
               `(dC_A)/(dx)  = 1 + 1600 x ((-1)/x^2)`

                             = 1 - `1600/x^2`

                             = `(x^2 - 1600)/x^2`

If `(dC_A)/dx = 0   then .(x^2  - 1600)/x^2 = 0`

         `x^2 - 1600 = 0
               `x^2 = 1600`
x = 40 and x = -40

Differentiating `(dC_A)/dx` w.r.t.x

`(dC_A)/dx = d/dx (1 - 1600/x^2) = 0 - 1600 xx (-2x^-3)`

`((dC_A)/dx^2) _(at x = 40) = 3200/(40)^3 = 3200/64000`

                                          = `1/20 > 0

Cm = 2x + 75
      = 2(40) + 75
      = 80 + 75 = 155
CA = x + 75 + `1600/40` = 155

Average cost is minimum for output = 40 .
Since, Cm at this output= 2(40) + .95 = 155

Cm = CA

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×