हिंदी

Evaluate the following : ∫x2.cos-1x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int x^2*cos^-1 x*dx`

योग

उत्तर

Let I = `int x^2.cos^-1 x*dx`

= `int (cos^-1x)*x^2dx`

= `(cos^-1x) int x^2*dx- int d/dx(cos^-1x) int x^2*dx]*dx`

= `(cos^-1x) (x^3/3) - int ((-1)/sqrt(1 - x^2)) (x^3/3)*dx`

= `x^3/(3) cos^-1x + (1)/(3) int (x^2.x)/sqrt(1 - x^2)*dx`

In `int x^3/sqrt(1 - x^2)*dx`, put 1 – x2 = t

∴ – 2x.dx= dt
∴ x.dx = `-(1)/(2)dt`

Also, x2 = 1 – t

∴ I = `x^3/(3) cos^-1x + (1)/(3) int ((1 - t))/sqrt(t) (-1/2)*dt`

= `x^3/(3) cos^-1x - (1)/(6) int (1/sqrt(t) - sqrt(t))*dt`

= `x^3/(3) cos^-1x - (1)/(6) int t^(-1/2) dt + (1)/(6) int t^(1/2)*dt`

= `x^3/(3) cos^-1x - (1)/(6) (t^(1/2)/(1/2)) + (1)/(6) t^(3/2)/(3/2) + c`

= `x^3/(3) cos^-1x - (1)/(3)sqrt(1 - x^2) + (1)/(9)(1 - x^2)^(3/2) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 1.12 | पृष्ठ १३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin x.


Integrate the function in x log x.


Integrate the function in xlog x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int (sinx)/(1 + sin x)  "d"x`


`int 1/(4x + 5x^(-11))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int 1/x  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`inte^(xloga).e^x dx` is ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate:

`int x^2 cos x  dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×