Advertisements
Advertisements
प्रश्न
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
उत्तर
Let `I = sin^-1 ((2x)/ (1 + x^2)) dx`
Put x = tan t
⇒ dx = sec2 t dt
∴ `I = int sin^-1 ((2 tan t)/ (1 + tan^2 t)) sec^2 t dt`
`= int sin^-1 (sin 2t) sec^2 t dt`
`= 2t sec^2 t dt = 2 int sec^2 t dt`
`= 2 {t int sec^2 t dt - int [d/dt(t) * int sec^2 t dt] dt}`
`= 2 [t tant - int 1 * tan t dt]`
= 2 t tan t + 2 log |cos t| + C
`= 2 tan^-1 x*x + 2 log |1/ sqrt (1 + x^2)| + C` `...[∵ cos t = 1/ (sect) = 1/ (sqrt (1 + tan^2 t)) = 1/ (sqrt (1 + x^2))]`
`= 2 x tan^-1 x + 2 log |(1 + x^2)^(1/2)| + C`
`= 2 x tan^-1 x + 2 (- 1/2) log |1 + x^2| + C`
`= 2 x tan^-1 x - log |1 + x^2| + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x sin-1 x.
Integrate the function in x cos-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: ∫ (log x)2 dx
`int 1/(4x + 5x^(-11)) "d"x`
`int sin4x cos3x "d"x`
`int ("d"x)/(x - x^2)` = ______
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int1/(x^2 + 25)dx`
The value of `inta^x.e^x dx` equals
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`