हिंदी

Integrate the function in sin-1(2x1+x2). - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.

योग

उत्तर

Let `I = sin^-1 ((2x)/ (1 + x^2))  dx`

Put x = tan t

⇒ dx = sec2 t dt

∴ `I = int sin^-1 ((2 tan t)/ (1 + tan^2 t)) sec^2 t dt`

`= int sin^-1 (sin 2t) sec^2 t dt`

`= 2t sec^2 t dt = 2 int sec^2 t dt`

`= 2 {t int sec^2 t dt - int [d/dt(t) * int sec^2 t  dt] dt}`

`= 2 [t tant  - int 1 * tan t  dt]`

= 2 t tan t + 2 log |cos t| + C

`= 2 tan^-1 x*x + 2 log |1/ sqrt (1 + x^2)| + C`     `...[∵ cos t = 1/ (sect) = 1/ (sqrt (1 + tan^2 t)) = 1/ (sqrt (1 + x^2))]`

`= 2 x tan^-1 x + 2 log |(1 + x^2)^(1/2)| + C`

`= 2 x tan^-1 x + 2 (- 1/2) log |1 + x^2| + C`

`= 2 x tan^-1 x - log |1 + x^2| + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 22 | पृष्ठ ३२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin x.


Integrate the function in x sin-1 x.


Integrate the function in x cos-1 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: ∫ (log x)2 dx


`int 1/(4x + 5x^(-11))  "d"x`


`int sin4x cos3x  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int"e"^(4x - 3) "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate:

`int1/(x^2 + 25)dx`


The value of `inta^x.e^x dx` equals


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×