हिंदी

Integrate the function in e2x sin x. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in e2x sin x.

योग

उत्तर

Let `I = inte^(2x) sinx dx`

`= e^(2x) int sin x dx - int [d/dx (e^(2x))* int sin x dx] dx`

`= e^(2x) (- cos x) - int 2e^(2x) (- cos x) dx + C_1`

`= -e^(2x) cos x + 2 int e^(2x) cos x dx + C_1`

`= -e^(2x) cos x + 2`       `...[e^(2x) int cos x dx - int (d/dx (e^(2x))* int cos xdx)  dx] + C_1`

`= -e^(2x) cos x + 2e^(2x) sin x - 4 int e^(2x) sin x dx + C_1 + C_2`

`= e^(2x) (2 sin x - cos x) - 4I + C_1 + C_2`

∵ `5I = e^(2x) (2 sinx - cos x) + C_1 + C_2`

⇒ `I = (e^(2x))/5 (2 sin x - cos x) + C`

where C = C1 + C2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 21 | पृष्ठ ३२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x sin-1 x.


Integrate the function in tan-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int(logx)^2dx` equals ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int (logx)^2 dx`


Evaluate `int tan^-1x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate:

`int x^2 cos x  dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×