Advertisements
Advertisements
प्रश्न
Integrate the function in e2x sin x.
उत्तर
Let `I = inte^(2x) sinx dx`
`= e^(2x) int sin x dx - int [d/dx (e^(2x))* int sin x dx] dx`
`= e^(2x) (- cos x) - int 2e^(2x) (- cos x) dx + C_1`
`= -e^(2x) cos x + 2 int e^(2x) cos x dx + C_1`
`= -e^(2x) cos x + 2` `...[e^(2x) int cos x dx - int (d/dx (e^(2x))* int cos xdx) dx] + C_1`
`= -e^(2x) cos x + 2e^(2x) sin x - 4 int e^(2x) sin x dx + C_1 + C_2`
`= e^(2x) (2 sin x - cos x) - 4I + C_1 + C_2`
∵ `5I = e^(2x) (2 sinx - cos x) + C_1 + C_2`
⇒ `I = (e^(2x))/5 (2 sin x - cos x) + C`
where C = C1 + C2
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x sin-1 x.
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int(logx)^2dx` equals ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int (logx)^2 dx`
Evaluate `int tan^-1x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`