Advertisements
Advertisements
प्रश्न
Integrate the function in ex (sinx + cosx).
उत्तर
Let `I = int e^x (sin x + cos x) dx`
Put ex sin x = t
`=> (e^x cos x + e^x sin x) dx = dt`
`therefore e^x (sin x + cos x) dx = dt`
`therefore I = int dt = t + C`
`= e^x sin x + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x log 2x.
Integrate the function in x tan-1 x.
Integrate the function in tan-1 x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int "e"^x x/(x + 1)^2 "d"x`
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int logx dx = x(1+logx)+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`