Advertisements
Advertisements
Question
Integrate the function in ex (sinx + cosx).
Solution
Let `I = int e^x (sin x + cos x) dx`
Put ex sin x = t
`=> (e^x cos x + e^x sin x) dx = dt`
`therefore e^x (sin x + cos x) dx = dt`
`therefore I = int dt = t + C`
`= e^x sin x + C`
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin 3x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in x (log x)2.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: ∫ (log x)2 dx
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`