English

Integrate the function in x sin 3x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in x sin 3x.

Sum

Solution

Let `I = int x. sin 3x  dx`

`= x int sin  3x  dx - int [d/dx  x int sin  3x  dx] dx`

`= x (- (cos 3x)/3) - int 1 ((- cos 3x)/3)  dx`

`= (x cos 3x)/3 + 1/3 int cos 3x  dx`

`= (x cos 3x)/3 + 1/3* (sin 3x)/3 + C`

`= - (x cos 3x)/3 + 1/9  sin 3x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 2 | Page 327

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in tan-1 x.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int1/sqrt(x^2 - a^2) dx` = ______


`inte^(xloga).e^x dx` is ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate `int(1 + x + (x^2)/(2!))dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×