English

Dxab∫dxsin(x-a)sin(x-b) is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.

Options

  • `sin("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`

  • `"cosec"("b" - "a") log|(sin(x - "a"))/(sin(x - "b"))| + "C"`

  • `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`

  • `sin("b" - "a")log|(sin("x" - "a"))/(sin(x - "b"))| + "C"`

MCQ
Fill in the Blanks

Solution

`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.

Explanation:

Let I = `int "dx"/(sin(x - "a")sin(x - "b"))`

Multiplying and dividing by sin(b – a) we get,

I = `1/(sin("b" - "a")) int (sin("b" - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`

= `1/(sin("b" - "a")) int (sin(x + "b" - x - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`

= `1/(sin("b" - "a")) int (sin[(x - "a") - (x - "b")])/(sin(x - "a") * sin(x - "b")) "d"x`

= `1/(sin("b" - "a")) int (sin(x - "a") cos(x - "b") - cos(x - "a") sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`

= `1/(sin("b" - "a")) int (sin(x - "a") * cos(x - "b"))/(sin(x - "a")*sin(x - "b")) - (cos(x - "a")*sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`

= `1/(sin("b" - "a")) int [(cos(x - "b"))/(sin(x - "b")) - (cos(x - "a"))/(sin(x - "a"))]"d"x`

= `1/(sin("b" - "a")) int [cot(x - "b") - cot(x - "a")]"d"x`

= `1/(sin("b" - "a")) [log sin(x - "b") - logsin(x - "a")] + "C"`

= `1/(sin("b" - "a")) * log|(sin(x - "b"))/(sin(x - "a"))| + "C"`

I = `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 167]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 49 | Page 167

RELATED QUESTIONS

Integrate the function in `e^x (1/x - 1/x^2)`.


`intx^2 e^(x^3) dx` equals: 


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int log(logx)/x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int logx/(1 + logx)^2  "d"x`


∫ log x · (log x + 2) dx = ?


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate the following.

`intx^3 e^(x^2) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`int x^2 cos x  dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×