Advertisements
Advertisements
Question
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
Options
`sin("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "a"))/(sin(x - "b"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`sin("b" - "a")log|(sin("x" - "a"))/(sin(x - "b"))| + "C"`
Solution
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
Explanation:
Let I = `int "dx"/(sin(x - "a")sin(x - "b"))`
Multiplying and dividing by sin(b – a) we get,
I = `1/(sin("b" - "a")) int (sin("b" - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x + "b" - x - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin[(x - "a") - (x - "b")])/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") cos(x - "b") - cos(x - "a") sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") * cos(x - "b"))/(sin(x - "a")*sin(x - "b")) - (cos(x - "a")*sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int [(cos(x - "b"))/(sin(x - "b")) - (cos(x - "a"))/(sin(x - "a"))]"d"x`
= `1/(sin("b" - "a")) int [cot(x - "b") - cot(x - "a")]"d"x`
= `1/(sin("b" - "a")) [log sin(x - "b") - logsin(x - "a")] + "C"`
= `1/(sin("b" - "a")) * log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
I = `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
APPEARS IN
RELATED QUESTIONS
Integrate the function in `e^x (1/x - 1/x^2)`.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/sqrt(2x^2 - 5) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int logx/(1 + logx)^2 "d"x`
∫ log x · (log x + 2) dx = ?
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate the following.
`intx^3 e^(x^2) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`