English

Integrate the following functions w.r.t. x: sin (log x) - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x:

sin (log x)

Sum

Solution

Le I  = `int sin (logx)x dx`

Put log x = t
∴ x = et
∴ dx = et dt

∴ I = `int sin t xx e^t dt`

= `int e^t sin t dt`

= `e^t int sin t dt - int [d/dt (e^t) int sin t dt] dt`

= `e^t (- cos t) - int e^t (- cos t) dt`

= `-e^t cos t + int e^t cos t dt`

= `- e^t cos t + e^t int cos t dt - int [d/dt (e^t) int cos t dt] dt`

= `- e^t cos t + e^t sin t - int e^t sin t dt`

∴ I = – et cos t + et sin t – I
∴ 2I = et (sin t – cos t)

∴ `I  = e^t/(2) (sin t - cos t) + c`

= `x/(2) [sin (logx) - cos (logx)] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 138]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate the function in x sin 3x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int sin4x cos3x  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


`int 1/sqrt(x^2 - 9) dx` = ______.


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int (logx)^2 dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×