Advertisements
Advertisements
Question
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Solution
Let I =`int ("x"/("x + 1")^2) "e"^"x"` dx
`= int "e"^"x" ((("x + 1") - 1)/("x + 1")^2)` dx
`= int "e"^"x"(("x + 1")/("x + 1")^2 - 1/("x + 1")^2)` dx
`= int "e"^"x" (1/("x + 1") - 1/("x + 1")^2)` dx
Put f(x) = `1/("x + 1")`
∴ f '(x) = `(-1)/("x + 1")^2`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
∴ I = `"e"^"x" (1/("x + 1"))` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(4x^2 - 1) "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate:
`int x^2 cos x dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`