Advertisements
Advertisements
Question
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Solution
Let I = `int "e"^"x" (("x - 1"))/("x + 1")^3 "dx" = int "e"^"x" (("x" + 1 - 1 - 1))/("x + 1")^3`dx
`= int "e"^"x" [("x + 1")/(("x + 1")^3) - 2/("x + 1")^3]` dx
`= int "e"^"x" [1/("x + 1")^2 - 2/("x + 1")^3]` dx
Put f(x) = `1/("x + 1")^2`
∴ f '(x) = `(-2)/("x + 1")^3`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" "f"("x") + "c"`
`= "e"^"x" xx 1/("x + 1")^2 + "c"`
∴ I = `"e"^"x"/("x + 1")^2 + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the function in `x^2e^x`.
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int 1/(4x + 5x^(-11)) "d"x`
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.