Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Solution
Let I = `int sqrt(4^x(4^x + 4)).dx`
= `int 2^xsqrt((2^x)^2 + 2^2).dx`
Put 2x = t
∴ 2x log 2 dx = dt
∴ 2x dx = `(1)/log2.dt`
∴ I = `int sqrt(t^2 + 2^2). dt/log2`
= `(1)/log2 int sqrt(t^2 + 2^2).dt`
= `(1)/log2[t/2 sqrt(t^2 + 2^2) + 2^2/(2)log|t + sqrt(t^2 + 2^2)|] + c`
= `(1)/log2 [2^x/2 sqrt(4^x + 4) + 2log|2^x + sqrt(4^x + 4)|] + c`
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in x sec2 x.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: ∫ (log x)2 dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/x "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`inte^(xloga).e^x dx` is ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
The value of `inta^x.e^x dx` equals
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`