English

∫x2ex3dx equals: - Mathematics

Advertisements
Advertisements

Question

`intx^2 e^(x^3) dx` equals: 

Options

  • `1/3  e^(x^3) + C` 

  • `1/3  e^(x^2) + C` 

  • `1/2  e^(x^3) + C` 

  • `1/2  e^(x^2) + C` 

MCQ

Solution

`1/3  e^(x^3) + C` 

स्पष्टीकरण:

`int x^2 e^(x^3)` dx

Putting x3 = t, 3x2 dx = dt

`= 1/3 int (3x^2)e^(x^3)` dx

`= 1/3 int e^t  dt = 1/3  e^t + C`

`= 1/3  e^(x^3) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 328]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 23 | Page 328

RELATED QUESTIONS

Integrate the function in x sin 3x.


Integrate the function in x log x.


Integrate the function in x sin-1 x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int(logx)^2dx` equals ______.


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


The value of `inta^x.e^x dx` equals


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×