मराठी

∫x2ex3dx equals: - Mathematics

Advertisements
Advertisements

प्रश्न

`intx^2 e^(x^3) dx` equals: 

पर्याय

  • `1/3  e^(x^3) + C` 

  • `1/3  e^(x^2) + C` 

  • `1/2  e^(x^3) + C` 

  • `1/2  e^(x^2) + C` 

MCQ

उत्तर

`1/3  e^(x^3) + C` 

स्पष्टीकरण:

`int x^2 e^(x^3)` dx

Putting x3 = t, 3x2 dx = dt

`= 1/3 int (3x^2)e^(x^3)` dx

`= 1/3 int e^t  dt = 1/3  e^t + C`

`= 1/3  e^(x^3) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 23 | पृष्ठ ३२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate the function in x sin x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Find `int_0^1 x(tan^-1x)  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - 9) dx` = ______.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int e^(logcosx)dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×