Advertisements
Advertisements
प्रश्न
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
उत्तर
Let `I = ((x - 3) e^x)/(x - 1)^3 dx`
`= int (e^x (x - 1 - 2))/(x - 1)^3 dx`
`= int e^x [1/((x - 1)^2) - 2/((x - 1)^3)] dx`
On substituting `e^x . 1/((x - 1)^2) = t`
`[e^x - 2 (x - 1)^-3 + 1/((x - 1)^2). e^x] dx = dt`
or `e^x [1/((x - 1)^2) - 2/(x - 1)^3] dx = dt`
Hence, `I = int 1. dt = t + C`
`= e^x/((x - 1)^2) + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x log 2x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x log x) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Solve: `int sqrt(4x^2 + 5)dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`