मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : e-xcos2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t.x:

`e^-x cos2x`

बेरीज

उत्तर

Let I = `int e^-x cos 2x.dx`

∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.

I = `cos 2x int e^-x  dx  – int int e^(-x). d/dx cos 2x. dx`

I = `cos 2x. (e^-x)/(d/dx (-x)) – int(e^-x)/(d/dx (- x)). (- sin 2x. d/dx 2x) dx`

I = `- cos 2x. e^-x  – int (- e^(-x)) . (- 2sin 2x) dx`

I = `- cos 2x. e^-x  –  2 int e^(-x). sin 2x  dx`

I = `- cos 2x. e^-x - 2 [sin 2x. int e^-x dx - int int e^(-x) dx. d/dx sin 2x. dx]`

I = `- cos 2x. e^-x - 2 sin 2x. (e^-x)/(- 1) + 2 int  (e^-x)/(- 1). cos 2x. 2. dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 2 int  2. e^(-x). cos 2x.dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4 int  e^(-x). cos 2x.dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4I`

I + 4I = `- cos 2x. e^-x + 2 sin 2x. (e^-x)`

5I = `e^-x (2. sin 2x - cos 2x)`

I = `e^-x/5  (2. sin 2x - cos 2x) + C`

shaalaa.com

Notes

Let I = `int e^-x cos 2x.dx`

∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.

I = `cos 2x int e^-x  dx  – int int e^(-x). d/dx cos 2x. dx`

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 2.02 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in xlog x.


Integrate the function in (sin-1x)2.


Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Solve: `int sqrt(4x^2 + 5)dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`inte^(xloga).e^x dx` is ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate `int tan^-1x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×