Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t.x:
`e^-x cos2x`
उत्तर
Let I = `int e^-x cos 2x.dx`
∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.
I = `cos 2x int e^-x dx – int int e^(-x). d/dx cos 2x. dx`
I = `cos 2x. (e^-x)/(d/dx (-x)) – int(e^-x)/(d/dx (- x)). (- sin 2x. d/dx 2x) dx`
I = `- cos 2x. e^-x – int (- e^(-x)) . (- 2sin 2x) dx`
I = `- cos 2x. e^-x – 2 int e^(-x). sin 2x dx`
I = `- cos 2x. e^-x - 2 [sin 2x. int e^-x dx - int int e^(-x) dx. d/dx sin 2x. dx]`
I = `- cos 2x. e^-x - 2 sin 2x. (e^-x)/(- 1) + 2 int (e^-x)/(- 1). cos 2x. 2. dx`
I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 2 int 2. e^(-x). cos 2x.dx`
I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4 int e^(-x). cos 2x.dx`
I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4I`
I + 4I = `- cos 2x. e^-x + 2 sin 2x. (e^-x)`
5I = `e^-x (2. sin 2x - cos 2x)`
I = `e^-x/5 (2. sin 2x - cos 2x) + C`
Notes
Let I = `int e^-x cos 2x.dx`
∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.
I = `cos 2x int e^-x dx – int int e^(-x). d/dx cos 2x. dx`
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x2 log x.
Integrate the function in (sin-1x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in `(xe^x)/(1+x)^2`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Solve: `int sqrt(4x^2 + 5)dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`