मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫x.cos3x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int x.cos^3x.dx`

बेरीज

उत्तर

cos 3x = 4 cos3x – 3cos x
∴ cos 3x + 3 cos x = 4 cos3x

∴ `int cos^3x = (1)/(4) cos3x + (3)/(4) cosx`

∴ `int cos^3x.dx = (1)/(4) int cos3x.dx + (3)/(4) int cos x.dx`

= `(1)/(4)((sin3x)/3) + (3)/(4) sinx`

= `(sin3x)/(12) + (3sinx)/(4)`                ...(1)

Let I = `int x cos^3x.dx`

= `x int cos^3x.dx - int[{d/dx (x) int cos^3x.dx}].dx`

= `x[(sin3x)/(12) + (3sinx)/(4)]- int 1.((sin3x)/(12) + (3sinx)/4).dx`      ...[By (1)]

= `(xsin3x)/(12) + (3x sinx)/(4) - (1)/(12) int sin 3x.dx - 3/4 int sin x.dx`

= `(x sin3x)/(12) + (3xsinx)/(4) - (1)/(12) ((-cos3x)/3) - (3)/(4) (- cos x) + c`

= `(1)/(4)[x/3 sin 3x + 1/9 cos3x + 3x sin x + 3 cos x] + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 1.17 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


Integrate the function in x sin x.


Integrate the function in xlog x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^3.logx.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: ∫ (log x)2 dx


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int"e"^(4x - 3) "d"x` = ______ + c


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`intsqrt(1+x)  dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


`int logx  dx = x(1+logx)+c`


Evaluate:

`int e^(logcosx)dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^2e^(4x)dx`


The value of `inta^x.e^x dx` equals


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×