Advertisements
Advertisements
प्रश्न
Evaluate the following : `int x.cos^3x.dx`
उत्तर
cos 3x = 4 cos3x – 3cos x
∴ cos 3x + 3 cos x = 4 cos3x
∴ `int cos^3x = (1)/(4) cos3x + (3)/(4) cosx`
∴ `int cos^3x.dx = (1)/(4) int cos3x.dx + (3)/(4) int cos x.dx`
= `(1)/(4)((sin3x)/3) + (3)/(4) sinx`
= `(sin3x)/(12) + (3sinx)/(4)` ...(1)
Let I = `int x cos^3x.dx`
= `x int cos^3x.dx - int[{d/dx (x) int cos^3x.dx}].dx`
= `x[(sin3x)/(12) + (3sinx)/(4)]- int 1.((sin3x)/(12) + (3sinx)/4).dx` ...[By (1)]
= `(xsin3x)/(12) + (3x sinx)/(4) - (1)/(12) int sin 3x.dx - 3/4 int sin x.dx`
= `(x sin3x)/(12) + (3xsinx)/(4) - (1)/(12) ((-cos3x)/3) - (3)/(4) (- cos x) + c`
= `(1)/(4)[x/3 sin 3x + 1/9 cos3x + 3x sin x + 3 cos x] + c`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
Integrate the function in x sin x.
Integrate the function in x2 log x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `e^x (1/x - 1/x^2)`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.logx.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: ∫ (log x)2 dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int(x + 1/x)^3 dx` = ______.
`int"e"^(4x - 3) "d"x` = ______ + c
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`intsqrt(1+x) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
Evaluate:
`int e^(logcosx)dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`
The value of `inta^x.e^x dx` equals
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`